Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Infect Chemother ; 30(6): 475-480, 2024 Jun.
Article En | MEDLINE | ID: mdl-38036030

INTRODUCTION: The melting temperature (Tm) mapping method (TM) identifies bacterial species by intrinsic patterns of Tm values in the 16S ribosomal RNA gene (16S rDNA) extracted directly from whole blood. We examined potential clinical application of TM in children with bloodstream infection (BSI). METHODS: This was a prospective observational study at a children's hospital in Japan from 2018 to 2021. In patients with diagnosed or suspected BSI, we investigated the match rates of pathogenic bacteria identified by TM and blood culture (BC), the inspection time to identification of TM, and the amount of bacterial DNA in blood samples. RESULTS: The median age of 81 patients (93 samples) was 3.6 years. Of 23 samples identified by TM, 11 samples matched the bacterial species with BC (positive-match rate, 48 %). Of 64 TM-negative samples, 62 samples were negative for BC (negative-match rate, 97 %). Six samples, including one containing two pathogenic bacterial species, were not suitable for TM identification. In total, the matched samples were 73 of 93 samples (match rate, 78 %). There were seven samples identified by TM in BC-negative samples from blood collected after antibiotic therapy. Interestingly, the bacteria were matched with BC before antibiotic administration. These TM samples contained as many 16S rDNA copies as the BC-positive samples. The median inspection time to identification using TM was 4.7 h. CONCLUSIONS: In children with BSI, TM had high negative-match rates with BC, the potential to identify the pathogenic bacteria even in patients on antibiotic therapy, and more rapid identification compared to BC. REGISTERING CLINICAL TRIALS: UMIN000041359https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000047220.

5.
Clin Infect Dis ; 73(9): e2538-e2544, 2021 11 02.
Article En | MEDLINE | ID: mdl-32712647

BACKGROUND: Patients with chronic granulomatous disease (CGD) develop severe infections, including Bacillus Calmette-Guérin (BCG). Although the autosomal recessive CGD (AR-CGD) patients should hypothetically develop relatively fewer infections compared to the X-linked CGD (X-CGD) patients due to more residual reactive oxygen intermediates, the impacts of BCG vaccination on AR-CGD and X-CGD patients are unclear. Herein, we demonstrated the clinical features of BCG infections, treatments, and genetic factors in CGD patients after BCG vaccination under the Japanese immunization program. METHODS: We collected data retrospectively from 43 patients with CGD and assessed their history of initial infection, age at diagnosis of CGD, BCG vaccination history, clinical course, treatment for BCG infections, and genetic mutations associated with CGD. RESULTS: Fourteen CGD patients avoided BCG vaccination because of other preceding infections and family history. Of 29 patients with CGD who received BCG vaccination, 20 patients developed BCG infections. Although the age at onset of initial infection in X-CGD patients was significantly younger than that in AR-CGD patients (P < .01), the onset and frequency of BCG infections were similar in X-CGD and AR-CGD patients. In X-CGD patients, BCG infections equally developed in the patients carrying missense, insertion, deletion, nonsense, and splice mutations of CYBB. All CGD patients with BCG infections were successfully treated with anti-tuberculous drugs. CONCLUSIONS: Although X-CGD patients develop severe infections at a younger age than AR-CGD patients, our data suggested that BCG infections develop at high frequency in both AR-CGD and X-CGD patients, regardless of genotype and mutant forms.


BCG Vaccine , Granulomatous Disease, Chronic , Granulomatous Disease, Chronic/complications , Granulomatous Disease, Chronic/epidemiology , Humans , NADPH Oxidases , Retrospective Studies , Vaccination
...